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LONG-TERM GOALS 
 
The Navy is in the early stages of incorporating high resolution Electro-Optic IDentification (EOID) 
sensors into shallow water littoral zone minehunting systems on towed, remotely operated, and 
autonomous platforms.  These downlooking laser-based sensors operate at unparalleled standoff ranges 
in visible wavelengths to image and identify mine-like objects (MLOs) that have been detected through 
other sensing means such as magnetic induction and various modes of acoustic imaging. 
 
Our long term goal is to provide a robust automated target cueing and identification capability for use 
with these imaging sensors.  It is also our goal to assist the Navy in understanding, quantifying, and 
ultimately predicting the detection, identification, and false alarm performance of these systems in 
varied conditions of water quality, ambient light, and range to target. 
 
OBJECTIVES 
 
Our primary objective in CY02 was to evaluate the performance of critical elements of our algorithm 
suite over the extensive database of EOID imagery collected in the August 2001 EOID Evaluation 
field trials off the coast of Panama City, FL.  Both target cueing and coarse classification algorithms 
were to be assessed as these would provide much of the functionality required for man-in-the-loop 
decision Aided Target Recognition.  Also as part of this objective, we sought to relate performance 
measures to quantified and varied test conditions to gain a preliminary understanding of the limitations 
of EOID Laser Line Scan (LLS) systems as currently configured. 
 
APPROACH 
 
Mine cueing and natural and man-made object identification are mechanized through an algorithm 
architecture that combines proven Raytheon target cueing and object classification/identification 
approaches from other military applications with new Computer Vision techniques. This hybrid 
architecture and the legacy Raytheon efforts that were leveraged in its construction are shown in 
Figure 1.  Investigators on these projects include: Dr. Alan Vanuga (model-based classifiers); Dr. Piali 
De (feature-based classifiers); Dr. Kamran Reihani (computer vision techniques), and Mr. Radzelovage 
(Airborne Standoff Minefield Detection System algorithm suite, including an MLO cuer).  
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Table 1 elaborates on the multiple paths available through this architecture based on the challenge 
presented by the test environment and the objective of the user.  Throughout the four-year evolution of 
this approach, all three of the processing challenges in Table 1 have been demonstrated at proof-of-
principle levels.  2002 Efforts have focused on Challenge #1 with the goal of maturing the 
corresponding processing flow to achieve robust performance levels appropriate for tactical Navy 
operations.  Henceforth, the discussions in this report will only address Challenge #1.  
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Figure 1:  The Multi-Strategy AiTR Processing Flow leverages successful 

 elements from multiple DOD-related efforts 
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Table1: The AiTR Processing Strategy adapts to the challenge and the user’s objective 
 

CHALLENGE #1 CHALLENGE #2 CHALLENGE #3
Detect and ID non- or low-level 
biofouled MLOs in low cluttered 
or near noise limited 
environments such as those 
which are conducive to sonar 
detection and military craft 
landings.

Detect and ID biofouled MLOs 
around which a local bio-
environment has formed; detect 
and ID any MLOs within a 
challenging discrete clutter 
environment such as a reef or 
textured rocky bottom.

Identify natural and man-made 
objects as well as natural 
background types in low-noise 
(near pristine) conditions for the 
purpose of automating benthic 
composition and environmental 
health studies. 

MLO Cuer Yes
ROI Segmentation Yes
Image Segmentation Yes Yes
Merging Yes Yes Yes
Pre-Screening Yes Yes Yes
Boundary/Surface Reconstruction Yes Yes Yes
Course Feature Extraction Yes Yes Yes
3-D Display Yes
Model-Based Radial Vector Classifier Yes Yes Yes
Sub-Segment and Re-Label Yes Yes
Internal Detail Feature Extraction Yes Yes
Feature-Based Classifier Yes Yes
Computer Vision Classifier TBD Yes

Architecture Components Involved in 
Meeting MCM Challenges

Implemented/Optimized/Robust (2-D)
Implemented/Optimization in Progress
Potential P3I Development Areas

 
 
 
WORK COMPLETED 
 
During the Key West Survey (Underwater Object Identification in Laser Line Scan Imagery) contract 
(Reference OP15 annual reports for CY1999 and CY2000), the multi-strategy processing architecture 
(Figure 1) was defined and the segmentation, region labeling, and preliminary computer vision 
components were implemented.  In CY2001, the coarse (Radial Vector) classifier was incorporated 
and demonstrated and a MATLAB and PC/GUI-based tool suite was created to support algorithm 
development and to provide an integrated capability to review, ground-truth, process, and analyze the 
uniquely formatted raw imagery and ancilliary data recorded during sensor operations.  Finally, an 
extensive data collection off Panama City, FL. was conducted in 2001 to support CY02 objectives. 
 
In CY02, the tool suite was used to ground truth all of the Panama City test images containing MLOs 
and was automated to extract image quality metrics (e.g. signal-to-noise-plus-clutter) relating to each 
MLO and to the conditions under which it was imaged.  The tool was then upgraded to exercise the 
algorithm suite over the entire data base to obtain performance estimates versus the quality metrics. 
 
Multiple iterations of modifying and re-testing the algorithms against a subset of the database were 
conducted.  Results were assessed at intermediate levels in the processing chain to understand and 
overcome the barriers to both object detection and to accurate boundary delineation - as is required for 
the Radial Vector Classifier.  As this effort progressed, it was determined that multi-stage 
segmentation approaches used to segregate the image into all of its constituent components (discretes 
and statistical backgrounds), although critical for environmental characterization studies, would not be 
viable for nearer-term real-time mine detection/identification applications. 
 
Consequently, a fast target cueing concept from Raytheon’s ASTAMIDS program was employed and 
found to be highly effective at identifying MLOs across the broad range of S/(N+C) conditions 
encountered in the data set.  The cuer steps are depicted in Figure 2 and are as follows: 
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• Mean Downsampling the Image to 6” Pixels – provides for uncorrelated noise reduction, 
greatly reduces downstream thruput, and yields  20-60 pixels on target (POT), ideal for simple 
boundary analysis and shape discrimination 

• Sobel Edge Magnitude Filtering – enhances edges in the scene and creates thick-walled 
outlines of any discrete objects that have reflectance contrast with respect to their immediate 
surroundings 

• Fill Factor (FF) Score Image – assesses the degree to which local regions throughout the 
image possess locally strong edge patterns that form simply shaped objects whose boundaries can be 
approximated by an elliptical annulus.  This processing is performed at every other pixel in the image 

• Peak/Mean Downsampled Fill-Factor Score Image – by downsampling the FF Score image, 
spurious high scores are knocked down while strong extended responses are preserved. This provides 
for false alarm reduction while eroding extended responses down to a few pixels among which a single 
peak can be found. 

• Local FF Score Peak Image – this processing finds all the local peaks within the Downsampled 
FF Score Image, reducing the likelihood of redundant “hits” (detections) on a given target. 

• Thresholded Peak Image – The final stage in detection is to threshold the Local Peak FF Image.  
The threshold was determined as a tradeoff between detection probability and false alarm rate for an 
empirical data set (in our case, a subset of the Panama City, FL data).  Identical thresholds as those 
used for ASTAMIDS were derived from the data set. 
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Figure 1:  The six processing stages in the MLO cuer are shown to effectively 
 detect all five man-made MLOs in the underwater scene 
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RESULTS 
 
The Cuer was exercised versus the entire Raytheon LLS image database collected at Florida Bay off 
Panama City in August 2001.  The database consisted of 231 images (1024 x 1024 pixels) containing 
over 600 MLOs, including mine simulants and man-made clutter.  Most of the MLOs had significantly 
lower signal-to-noise-plus-clutter than the case illustrated in Figure 2 above, making detection 
challenging.  The results of this testing are conveyed in the four graphs in Figure 3. 
 
The upper left plot shows detection probability as a function of Edge-MAD (Mean Amplitude 
Difference of Edges).  Edge-MAD is a degree-of-difficulty metric extracted from our ground truth tool 
and is defined as the absolute value of the average intensity difference between the object boundary 
pixels and those in their immediate background divided by the standard deviation of the intensity 
values in the local background.  This metric is akin to the signal-to-noise-plus-clutter-ratio but 
correlates better with results since an edge filter is used in the detection processing.  The detection 
curve in this plot has the classic form of statistical signal processing detection theory but has 
significantly better performance (Pd >65% as Edge-MAD approaches 1.0).  This is because the 
algorithm employs spatial correlation while statistical signal processing does not, and because some 
detections occur on internal structure that has stronger edges than the target boundary.  The cuer false 
alarm rate was about 2 per image (~106 pixels), but many were due to image edge artifacts that will be 
corrected in future processing. 
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Figure3: The Cuer detection probability is robust  
 
 
The other plots in Figure 3 relate the cuer performance to important factors of the test environment - 
altitude and water column attenuation.  These plots show that cuer performance has little dependence 
on altitude (because there are still sufficient pixels on target) but does begin to roll off at about five 

 5 



 6 

attenuation lengths.  This rolloff occurs because of signal reduction with respect to the system noise 
level and is expected from the physics and the run geometry. 
 
IMPACT/APPLICATION 
 
A robust target cueing and identification capability developed under this project will have insertion 
potential into Navy minehunting and neutralization systems such as AQS-20A, RMS, AMNS, 
AUV/UUV applications, etc.  Further development of the biological species ID capability provided by 
the Computer Vision Classifier has utility in environmental health surveys and species population and 
habitat studies. 
 
TRANSITIONS 
 
None to date.  The algorithms developed will be offered on an as-needed/as requested basis to the 
AQS-20A program pending the results obtained from alternative approaches in upcoming field trials. 
 
RELATED PROJECTS 

 
OP52 – “EOID Model Validation and Performance Prediction”.  Tom Stefanick and Sam Osofsky of 
Metron are developing and validating models for EOID sensors and their operating environments to 
support system level imaging and target ID performance predictions   
 
REFERENCES 

 
The algorithms discussed herein have been developed under Raytheon proprietary and application-
specific funding and as such do not have publicly available references.  An exception to this is the “K-
Means Clustering” algorithm which is a textbook segmentation approach in the digital image 
processing community.   
 
There are multiple references discussing the foundation upon which the computer vision concepts 
detailed herein are developed.  A list of references is available upon request.  


